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Study of water waves with submerged obstacles using a vortex
method with Helmholtz decomposition

M. Y. Lin∗,† and L. H. Huang
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SUMMARY

The present study develops a 2-D numerical scheme that combines the vortex method and the boundary
integral method by a Helmholtz decomposition to investigate the interaction of water waves with submerged
obstacles. Viscous effects and generation of vorticity on the free surface are neglected. The second kind
of Fredholm integral equations that govern the strengths of vortex sheets along boundaries are solved
iteratively. Vorticity is convected and diffused in the fluid via a Lagrangian vortex (blob) method with
varying cores, using the particle strength exchange method for diffusion, with particle redistribution. A
grid-convergence study of the numerical method is reported. The inviscid part of the method and the
simulation of the free-surface motion are tested using two calculations: solitary wave propagation in a
uniform channel and a moving line vortex in the fluid. Finally, the full model is verified by simulating
periodic waves travelling over a submerged rectangular obstacle using nonuniform vortex blobs with a
mapping of the redistribution lattice. Overall, the numerical model predicts the vortices’ evolution and
the free-surface motion reasonably well. Copyright q 2008 John Wiley & Sons, Ltd.

Received 16 May 2007; Revised 27 May 2008; Accepted 28 May 2008

KEY WORDS: free surface; vortex motion; fluid–structure interaction; vortex methods; boundary integral
methods

1. INTRODUCTION

The interaction of surface water waves with submerged structures has attracted attention in many
fields of engineering applications. Especially in coastal engineering, the protection against beach
erosion by submerged breakwaters with reduced environmental and visual impacts has been an
important topic in recent years. Numerous theoretical and numerical studies for this problem have
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been implemented based on potential-flow theory with the assumption that the flow is irrotational
[1–10]. Chan et al. [11] implemented the analytic investigation of linear, viscous water waves
with the assumption that flow is essentially irrotational except in the unseparated boundary layers
adjacent to solid and free-surface boundaries. One of the benefits of the approaches using the
irrotational-flow assumption is the efficient computation by applying boundary integral methods,
and these approaches usually predict the transformation of water waves accurately if flow separation
is not severe.

However, for the study of flow field around a bluff body, the effects of flow separation cannot be
neglected. Owing to this reason, numerous numerical schemes for solving free-surface flow with
viscous effects have been developed. Many researchers have studied this problem by solving the
Navier–Stokes equations for laminar flows or the Reynolds averaged Navier–Stokes equations with
turbulence closure for turbulent flows using various numerical schemes such as finite difference
methods [12, 13], finite-analytic methods [14, 15], finite volume methods [16–18] and finite element
methods [19–21]. These numerical methods are all grid-based schemes. In the schemes using
a moving mesh, it is necessary to update the grid points every time step in order to cooperate
with the moving free-surface boundary, and it may introduce additional numerical errors. Even
if a Eulerian method with fixed grid points is applied, it may be difficult to track the fluid
interface and enforce the free-surface boundary conditions. On the other hand, using a grid-based
scheme, it is necessary to set a sufficient resolution near submerged bodies to capture vorticity
generation and evolution; otherwise, the strength of the generated vortices may be underestimated
by the insufficient resolution and the induced numerical dissipation. A Lagrangian, grid-free
vortex (particle) method [22] is an alternative scheme to avoid the errors from the insufficient
grid resolution and the numerically dissipative truncation for a viscous-flow simulation. However
(to the best of our knowledge), very few researchers have extended vortex methods to the simulation
of free-surface flow. Lundgren and Koumoutsakos [23] have investigated an application of vortex
methods for viscous free-surface flows, but their aim was to study the mechanism for the generation
of vorticity at the free surface and did not present any computational result.

This paper focuses on the numerical study of vortex generation and evolution induced by
2-D free-surface flow passing over submerged obstacles. Since for most problems in water-wave
mechanics the free-surface viscosity is negligible, at the free surface we ignore the effect of
viscosity and the generation of vorticity. In this study an essentially grid-free numerical model
is developed. The motivation is based on the fact that in water-wave problems the flow field far
from submerged bodies can be simplified to be irrotational and may be treated by including a
viscous-flow correction to the potential-flow analysis. To accomplish this, we apply the Helmholtz
decomposition [1] to decompose the flow field into two components: one related to the vorticity
(vortical velocity) and the other being irrotational. It should be noted that the two components
are not solved independently because they affect each other. In this study, a vortex method that
determines the viscous-flow dynamics by attaching the vorticity to the computational elements
(vortex particles) is applied to simulate the vortical velocity field. In contrast with grid-based
schemes, the Lagrangian vortex particles convect without numerical dissipation and automatically
adjust to resolve the regions with vorticity. The distribution of dipole (vortex sheet) along the
free surface determines the irrotational flow field, and the vortex sheet along the solid surface
determines the vorticity flux into the fluid. The strengths of these singularities are solved iteratively
by a boundary integral method based on the approach proposed by Baker et al. [24].

In Section 2 the mathematical formulations for solving the alternative variables instead of the
primitive ones are presented. In Section 3 we describe the numerical formulations and the solution
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procedure of the proposed method. In Section 4 the verifications of the method and an application
to periodic water waves over a rectangular submerged obstacle are described. Finally, conclusions
of the present study are given in Section 5.

2. MATHEMATICAL FORMULATIONS

2.1. Governing equations

Here, we consider 2-D flow in a uniform channel with a free surface and a submerged obstacle
(see Figure 1(a). Figure 1(b)–(c) will be referred later). The fluid is assumed to be incompressible
with constant density and viscosity. The motion of fluid is governed by the continuity equation
and the Navier–Stokes equations in terms of the velocity u and the pressure p:

∇ ·u=0 (1)

Du
Dt

=−1

�
∇ p−gĵ+�∇2u (2)

with the material derivative defined as

D

Dt
= �

�t
+u·∇ (3)

where ĵ is the unit vector that points vertically upwards, � the density, g the gravitational acceler-
ation, � the molecular viscosity and x=(x, y), u=(u,v).

By taking the curl of each term in (2) and using (1), we obtain the vorticity transport equation

D�

Dt
=�∇2� (4)

with the concept of vorticity x=(0,0,�) defined as

x=∇×u (5)

2.2. Boundary conditions

2.2.1. Solid-surface boundary condition. On the impermeable, solid surface xB, flow kinematics
dictates that the normal component of the flow velocity must be equal to the normal component
of the solid-surface velocity UB:

u(xB) ·n̂=UB(xB) ·n̂ (6)

The boundary condition for the tangential component of the velocity results from the effect of
molecular viscosity, enforcing that the tangential components of the velocity of the fluid and the
velocity of the solid surface are the same:

u(xB) · t̂=UB(xB) · t̂ (7)

The two equations compose the no-slip boundary condition on a solid surface:

u(xB)=UB(xB) (8)
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Figure 1. Definition sketch for water waves over a submerged obstacle: (a) original setup;
(b) definition sketch with sponge layers and an internal wave-maker; and (c) definition

sketch in which the method of image is used.
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2.2.2. Kinematic free-surface boundary condition. At the free surface there must be no flow across
the interface. This leads to its kinematic free-surface boundary condition (KFSBC). In a Lagrangian
aspect, it gives

DxF
Dt

=u(xF) (9)

where xF denotes the free-surface points.

2.2.3. Dynamic free-surface boundary condition. The dynamic free-surface boundary condition
(DFSBC) is determined by the continuity of pressure across the free surface and the momentum
equation (2) in which the free-surface viscosity is ignored:

Du
Dt

(xF)=−1

�
∇ p−g∇(xF · ĵ) with p= patm (10)

where patm is the atmospheric pressure.

2.2.4. Lateral boundary condition. From amathematical aspect, the lateral boundaries are extended
to infinity to avoid wave reflection, but numerically we have to truncate the computational domain
into a limited region. For this reason, numerical sponge layers are used at both lateral boundaries
to absorb the outward-traveling waves. Furthermore, to generate specific wave trains a designed
mass source is set in the flow region near the left boundary. The details are presented in Section 3.3.

2.3. Integral formulations of Helmholtz decomposition

Applying the integral formulations of the Helmholtz decomposition (a detailed description is
presented in the Appendix), fluid velocity can be expressed as

u(x) =
∫
V

�(x′)k̂×∇G dx′+
∫
SF

�F(x′)k̂×∇G dx′

=
∫
V

�(x′)k̂×∇G dx′+∇
∫
SF

�(x′) �G
�n(x′)

dx′ (11)

where �F and � are, respectively, the strength of the vortex sheet and dipole, SF indicates the free
surface and G is the fundamental solution of Laplace’s equation given by

G=G(x,x′)= 1

2�
ln |x−x′| (12)

We may note that in Equation (11) the boundary integral is only over the free surface, and the
surface distribution of dipoles is equivalent to a vortex sheet. In fact, in 2-D flow the vortex-sheet
strength is related to the arclength derivatives of the dipole strength [24].

From this integral formulation, we may construct an alternative well-posed problem for xF, �F
and � expressed by the following set of governing equations and boundary conditions:

DxF
Dt

=u(xF) on SF (13a)

��F

�t
=F(�F,�,xF, t) on SF (13b)
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D�

Dt
=�∇2� in V (13c)

u(xB)=UB(xB) on SB (13d)

Equation (13a) is the KFSBC, which is used to solve the free-surface position xF. Equation (13b),
an evolution equation for solving �F, will be derived in Section 2.5 from the DFSBC. The vorticity
field � is governed by the vorticity transport equation (13c), enforcing the no-slip boundary
condition (13d) on the solid surface.

2.4. Viscous splitting algorithm for the vorticity boundary condition

Since a vortex method is used to solve the vorticity field, in the present study a treatment for the
no-slip boundary condition in the context of vortex methods is required. Following the so-called
‘viscous splitting algorithm’ in vortex methods [22, Chapter 6], equation set (13) is solved by a
fractional step. Consider that in the time interval [tn, tn+1] the flow is advanced from tn to tn+1,
and vorticity fields �1 and �2 are the solutions of vorticity solved by the following two substeps:

Substep 1—free surface and existent vorticity transportation:
DxF
Dt

=u(xF) on SF (14a)

��F

�t
=F(�F,�B,�1,xF, t) on SF (14b)

u·n̂=UB ·n̂ ⇒ ��B

�t
=H(�F,�B,�1,xF, t) on SB (14c)

D�1

Dt
=�∇2�1 in V (15a)

�1(·, tn)=�n in V (15b)

��1

�n
=0 on SB (15c)

In this substep, since only the normal component of the solid-surface boundary condition is applied,
on SB there is no net vorticity produced into the fluid and a ‘spurious’ vortex sheet �B induced
by the slip velocity on SB appears in order to enforce the no-penetration boundary condition. The
evolution equation for �B, Equation (14c), will be derived in Section 2.5.

Substep 2—vorticity creation:
D�2

Dt
=�∇2�2 in V (16a)

�2(·, tn)=0 in V (16b)

�
��2

�n
= t̂ ·D(uslip−UB)

Dt
on SB (16c)
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Here, uslip is the slip velocity on the solid surface, solved in Substep 1. Equation (16c) indicates
the vorticity flux on SB to cancel the slip velocity. This is the completion of one time step of the
proposed algorithm, with the vorticity field �n+1=�1(·, tn+1)+�2(·, tn+1) and the velocity field
evaluated by Equation (11).

2.5. Evolution equations for �F and �B

The evolution equations for �F and �B are derived following the approach proposed by Baker
et al. [24] and are modified to be able to involve the effect of vorticity in the fluid. Since the
vorticity field is discretized by a set of vorticity-carrying particles, from Equation (11) we find that
fluid velocity can be expressed by a scalar velocity potential composed of a set of point vortices
in the fluid and a dipole (vortex) distribution along SF. In addition, due to the implementation of
the viscous splitting algorithm, along SB a spurious vortex distribution should be included. The
scalar velocity potential is

�(x, y) =
∫
SF

�(e)
�G
�n

sFe de+ 1

2�

∫
SB

�B(e) tan−1 y− y(e)

x−x(e)
sBe de

+ 1

2�

N∑
j=1

� j tan
−1 y− y j

x−x j
+mI (t)

2�
ln[(x−xI )

2+(y− yI )
2]1/2 (17)

where sF=|xF ·xF|, sB=|xB ·xB| and the subscript e denotes differentiation with respect to the
label e, which is chosen to be a Lagrangian variable along the free surface. The contribution
from the vorticity field is represented by the potential induced by N point vortices, which are
characterized by their positions x j and circulations � j . The last term on the right-hand side
of Equation (17) is an added point source located at xI with the time-varying strength mI (t),
prescribed to generate wave trains if an internal wave-maker is used.

For convenience, herein we introduce the complex notation z= x+ iy for the complex field point
and q=u+ iv for the complex velocity. We also define the unnormalized vortex-sheet strength
�B=�BsBe to simplify the following formulations. Therefore, the Lagrangian motion of the free
surface, which satisfies the KFSBC (14a) is given by

�zF
�t

(e)≡ q̃(e)=q(e)+ 	�F(e)

2zFe(e)
(18)

where q̃ is the weighted average of the velocities across the free surface, determined by the last
term on the right-hand side of Equation (18) with |	|�1 being the weighting factor and z̄ indicating
the complex conjugate of z. The average complex velocity at the free surface, q(e), is given by

q̄(e) = 1

2�i
PV

∫
SF

�F(e
′)K (zF(e), zF(e

′))de′+ 1

2�i

∫
SB

�B(e′)K (zF(e), zB(e′))de′

+ 1

2�i

N∑
j=1

� j K (z(e), z j )+ �SI
�z

(zF(e)) (19)
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Here, PV indicates the principal value of the singular integral, K (z, z′)≡1/(z−z′), �F(e)=
�F(e)sFe=�e, and

SI (z, t)= mI (t)

2�
ln(z−zI ) (20)

The Lagrangian motion of zF(e) follows the lower or upper fluid when 	=1 or −1, respectively,
and −1<	<1 chooses some weighted average of the two. The choice of the weighting factor
that determines the tangential velocity for the Lagrangian markers is at our disposal (see [25] for
detailed discussion). Instead of Equation (14a), Equation (18) is used as the kinematic evolution
equation for the free-surface markers.

The DFSBC (10) can be expressed as the Bernoulli equation that governs the change in the
potential on either side of the free surface and leads to the evolution equation for �F as

��F
�t

= 	

2

�
�e

�2F
zFezFe

−2A

[
�
{

�q̄
�t

zFe

}
− 	

2
�F�

{
qe
zFe

}
+ 1

8

�
�e

�2F
zez̄e

+gyFe

]
(21)

where A is the Atwood ratio defined as the difference in the density of water and air divided
by their sum. For water-wave problems we may set A=1. On the right-hand side of Equation
(21), the first four terms arise from the dynamic-pressure term of the Bernoulli equation, and the
last term is from the hydrostatic pressure. Equation (21) is substituted for Equation (14b) as the
evolution equation for �F.

On the solid surface, the normal velocity component should be continuous across the interface
so that the no-through-flow boundary condition (14c) can be imposed. This condition can also
be expressed alternatively in terms of the tangential velocity component, leading to a Fredholm
integral equation of the second kind [22]. The condition that has to be imposed to satisfy the
no-through-flow boundary condition on SB is

�{zBeq̄B}=0 (22)

where qB is the fluid velocity at the solid boundary. By differentiating Equation (22) in time, we
obtain the evolution equation for �B as

��B
�t

(e) = 2�
{
zBe(e)

2�i

∫
SF

��F
�t

(e′)K (zB(e), zF(e
′))de′

+ zBe(e)

2�i
PV

∫
SB

��B
�t

(e′)K (zB(e), zB(e′))de′

+ zBe(e)

2�i

∫
SF

�(e′)�K
�t

(zB(e), zF(e
′))de′+ zBe(e)

2�i

N∑
j=1

d� j

dt
K (zB(e), z j )

+ zBe(e)

2�i

N∑
j=1

� j
�K
�t

(zB(e), z j )+zBe(e)
�2SI
�t�z

(zB(e))

}
(23)

Again, Equation (23) is substituted for Equation (14c) as the evolution equation for �B.
Equations (21) and (23) are coupled Fredholm integral equations of the second kind and can be

solved efficiently in both storage and work by iteration (see [24] for detailed proof).
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3. NUMERICAL IMPLEMENTATION

First of all, in Section 3.1 we introduce the vortex method that is used in the present model to
solve equation sets (15) and (16). In Section 3.2 the iteration scheme for solving �F and �B and
the solution procedure of the integrated model are presented. Other numerical techniques and
treatments applied in this model are shown in Sections 3.3–3.6.

3.1. The vortex method for 2-D flows

The vorticity transportation and creation are solved via the vortex method proposed by Ploumhans
and Winckelmans [26]. In this method, vortex blobs may be with spatially varying cores, and
the particle strength exchange (PSE) for diffusion is done in the physical domain. Based on this
method, the vorticity field governed by systems (15) and (16) is solved in a Lagrangian frame to
convect the vorticity-carrying fluid elements (xi ) and then to update their strength

dxi
dt

=u(xi , t) (24)

d�

dt
=�∇2� (25)

The vorticity field is discretized to obtain a numerical approximation by N particles:

�(x, t)=
N∑
j=1


 j (x−x j )� j (26)

and each particle is characterized by its position x j (t) and circulation � j (t). 
 j is a distribution
function. In this study a Gaussian distribution is used:


 j (x)=
1

2��2j
exp

(
−|x|2
2�2j

)
(27)

where the quantity � j is a measure of the core radius of the vortex.
Subsequently, the right-hand sides of Equations (24) and (25) are replaced by integral operators

and then discretized by vortex particles. By applying Equations (11) and (26), Equation (24) can
be expressed as

dxi
dt

=−
N∑
j=1

�(|xi −x j |/�i j )
|xi −x j |2 (xi −x j )×k̂� j +

∫
SF

�F(e
′)k̂×∇G(xi ,xF(e′))de′ (28)

where �(y)=1/2�(1−exp(−y2/2)) and �2i j =(�2i +�2j )/2. A direct computation for the first term

on the right-hand side of Equation (28) requires O(N 2) work and is prohibitively expensive. In
this study, a code using the fast multipole method [27] that has a ‘theoretical’ operation count of
O(N ) is developed to reduce the computation cost. In the fast algorithm the maximum number of
terms P needed in the expansion to a given accuracy ε is chosen such that [27–29](∑

i
|�i |

)
2−P�ε
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In this study P=10 is used. Although the optimal O(N ) behavior is not exhibited in the present
study because a big overhead is required due to the multipole and Taylors expansions, significant
saving of CPU time is indeed achieved.

The diffusion of the existent vorticity in the fluid is implemented by the technique of PSE:

d�i

dt

∣∣∣∣
PSE

=2�
N∑
j=1

1

�2i j
(Si� j −S j�i )
i j (xi −x j ) (29)

where Si is the area of fluid associated with the particle i , and


i j (x)=
1

2��2i j
exp

(
−|x|2
2�2i j

)
(30)

In practice, the first summation in Equation (29) may not involve all N particles since 
i j decreases
rapidly. We ignore the contribution of particles more than 5� from xi .

The vorticity creation on a solid wall, i.e. the solution of equation set (16), can also be determined
by an integral operator. At every time step, vorticity flux should be distributed to neighboring
particles. The approximate solution proposed in [26] to determine the increasing rate of circulation
from the vorticity flux at a wall and received by the particle i , (d�i/dt)|wall, is used in this
model.

To preserve the accuracy in the PSE scheme, one needs to maintain the condition that the
particle cores overlap (h p/��1, with h p the typical distance between particles) at all times. It
is necessary to interpolate the vorticity field with distorted locations onto equi-spaced (h p×h p
lattice) particle locations. If the core radius is spatially varying, the remeshing is performed in
a mapped domain (see Section 4.3.2) in which the vorticity is interpolated onto a 1×1 mapped
lattice. To achieve this, a remeshing scheme with the M ′

4 interpolation kernel introduced for the
smooth particle hydrodynamics method [30] is used. In the vicinity of boundaries the decen-
tered �′

p schemes [26] are used instead. In this study we use a �′
3 kernel for particles with

distance between 1
2h p and 3

2h p, and a �′
2 kernel for particles less than 1

2h p from the boundary.
Usually, an optimal frequency of particle redistribution needs to be obtained from numerical
experiments. Moreover, redistribution is crucial to maintain the overlapping condition if blobs
of variable size are used. In this study, we find that the frequency of remeshing should not
be less then 2 time steps; otherwise, inappropriate oscillations of vorticity and velocity will be
present.

3.2. Solution procedure

Considering the stability of the computation for the free-surface motion, we use a fourth-order
Adams–Bashforth–Moulton (A.B.M.) predictor–corrector scheme to perform the time integrations
for ��F/�t and �zF/�t . In addition, the first few time steps are treated with an explicit fourth-order
Runge–Kutta technique. The A.B.M. scheme applied to an equation of the form dy/dt= f (t) is

y1p = y0+ �t

24
(55 f0−59 f−1+37 f−2−9 f−3)

y1c = y0+ �t

24
(9 f1p+19 f0−5 f−1+ f−2)

(31)
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Here, fn denotes f (t+n�t) and y1p, y1c denote the ‘predicted’ and ‘corrected’ values of y1.
The progress of vortex particles is performed explicitly using the second-order Adams–Bashforth
scheme, and the vorticity creation should be implemented twice in one time interval because
at the ‘corrected’ step an adjustment in ��/�n is required to enforce the no-slip boundary
condition.

Assume that at the nth time step (time t) all variables are known; thus, we seek to obtain their
solutions at the next time step (time t+�t). The following four-step procedure is carried out (the
corresponding flow diagram is shown in Figure 2):

Step 1—(predicted) evolution of zF, �F and �B : The evolution equations for �F and �B, Equations
(21) and (23), can be expressed as

��F
�t

=LF

(
��F
�t

,
��B
�t

)
+FF (32)

��B
�t

=LB

(
��F
�t

,
��B
�t

)
+FB (33)

where LF, LB indicate the integrals involving ��F/�t and ��B/�t , respectively, and the remainder
of the terms in (21) and (23) are represented by FF, FB, respectively. In Equations (32) and (33),
spatial integrals are computed by the sums based on trapezoidal quadrature, spatial derivatives with
respect to e are evaluated using cubic spline approximations and d� j/dt is evaluated by Equation
(29). The iterative procedure to solve the nth approximation of ��F/�t and ��B/�t is implemented
by the following equations [5]:

��(n)
F

�t
= 1

2
LF

(
��(n−1)

F

�t
+LF

(
��(n−1)

F

�t
,
��(n−1)

B

�t

)
,LB

(
��(n−1)

F

�t
,
��(n−1)

B

�t

))

+FF+ 1

2
LF(FF,FB) (34)

��(n)
B

�t
= 1

2
LB

(
LF

(
��(n−1)

F

�t
,
��(n−1)

B

�t

)
,
��(n−1)

B

�t
+LB

(
��(n−1)

F

�t
,
��(n−1)

B

�t

))

+FB+ 1

2
LB(FF,FB) (35)

The iterative procedure is stopped when the absolute value of the difference in two successive
iterates is less than 10−5.

Subsequently, the predicted values of �F(t+�t) and zF(t+�t) are obtained by the fourth-order
Adams–Bashforth scheme, and the predicted �B(t+�t) is evaluated simply by

�B(t+�t)= ��B
�t

�t (36)

because in the past �B has been diffused into the fluid and merged into the existent vortex particles.
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Figure 2. Flow diagram for numerical procedure.

Step 2—vorticity transportation and generation: The velocity of the vorticity-carrying particles is
computed by Equation (28) and then integrated with a second-order Adams–Bashforth scheme to
advance the particle positions. The strength of particles is updated by the PSE scheme and the
vorticity flux from the solid wall. These can be expressed as

xn+1
i =xni +�t ( 32ui (x

n,�n)− 1
2ui (x

n−1,�n−1)) (37)
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�∗
i =�n

i +�t
d�i

dt

∣∣∣∣
PSE

(xn,�n) (38)

�n+1
i =�∗

i +�t
d�i

dt

∣∣∣∣
wall

(xn+1,�∗) (39)

The remeshing scheme is applied every few time steps after the convection and diffusion of
vortices. After each redistribution, at the new time step an Adams–Bashforth scheme is infeasible,
and a second-order Runge–Kutta scheme is applied for vortex convection:

xn+1/2
i =xni +�t ui (xn,�n) (40)

�∗
i =�n

i +�t
d�i

dt

∣∣∣∣
PSE

(xn,�n) (41)

xn+1
i =xni + 1

2�t (ui (x
n,�n)+ui (xn+1/2,�∗)) (42)

The update of particle strength is also performed using Equations (38) and (39).

Step 3—(corrected) evolution of zF, �F and �B: Solve ��F/�t and ��B/�t at time t+�t (the
corrector step) by iteration. Subsequently, the corrected values of �F(t+�t) and zF(t+�t) are
obtained by the fourth-order Adams–Moulton scheme, and the corrected value of �B(t+�t) is
evaluated by Equation (36).

Step 4—(corrected) vorticity generation: The diffusion of the (corrected) vortex sheet �B(t+�t)
is implemented by Equation (39) to ensure that at time t+�t the flow field satisfies the no-slip
boundary condition on the solid surface.

After sufficiently long-term computation, instability on the computed free surface usually grows.
A linear filtering scheme [31] that involves filtering zF and �F is applied to remove the instability.

3.3. Wave generation and absorption

To generate periodic wave trains, we prescribe a point mass source with time-varying strength
inside the numerical domain near the left boundary (Figure 1(b)). This is usually called the ‘internal
wave-maker’ [32]. In this research, the desired wave train to generate is the second-order Stokes
wave [33]:

yF(t)= H

2
cos

(�

2
−�t− ps

)
+ H2k

16sinh3 kh
coshkh(2+cosh2kh)cos

[
2
(�

2
−�t− ps

)]
where k=2�/L is the wave number; L , the wave length; �=2�/T , the angular frequency; T , the
wave period; H , the wave height; h, still water depth; and ps , the phase shift constant to enforce
yF=0 at t=0. Following the method proposed in [32], we may get the corresponding source
function as

mI (t) = LH

T
cos

(�

2
−�t− ps

)

+ LH2k

8T

coshkh

sinh3 kh
(2+cosh2kh)cos

[
2
(�

2
−�t− ps

)]
(43)
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It should be noted that in the present study the internal wave-maker is a point source, instead of
a rectangular source region with constant strength used in [32].

The sponge layer technique [5], which can reduce �F efficiently to zero and avoid significant
wave reflections, is used to absorb outgoing waves at the truncation boundaries. We locate the
sponge layers with length Ls at the left and right boundaries, xs1−Ls�x�xs1 and xs2�x�xs2+Ls
(see Figure 1(b)), and then add damping terms into Equations (18) and (21):

�zF
�t

= q̃− i�s(x)yF (44)

��F
�t

= R�F(�F, zF)−�s(x)�F (45)

where R�F(�F, zF) indicates the right-hand side of Equation (21), and

�s(x)=

⎧⎪⎪⎨
⎪⎪⎩

�d(x−xs1)
2/L2

s , x�xs1

�d(x−xs2)
2/L2

s , x�xs2

0 otherwise

(46)

where �d is a positive constant. The optimal values of �d and Ls can be determined by a series of
numerical tests.

3.4. Sub-grid modelling

For high-Reynolds-number flow the turbulent effect should be taken into account; otherwise, the
dissipation of vorticity could be underestimated. In this paper, the turbulent eddy viscosity evaluated
by a subgrid-scale model [34] is applied to simulate the effect of the subgrid-scale eddies on the
larger scales. Eddy viscosity �eddy is given by

�eddy=Cs2�2
√
Si j Si j (47)

where Si j denotes the strain rate tensor:

Si j = 1

2

(
�ui
�x j

+ �u j

�xi

)

� is the filter length scale related to the core size of vortex particles [35] and Cs is a constant in
the range of 0.1�Cs�0.24. Typically Cs=0.15.

3.5. Method of image for the boundary condition on the flat bottom

In this study, the bottom of the numerical wave tank is set to be flat, and a ‘method of image’
may be applied in Substep 1 to enforce the no-penetration boundary condition on the bottom.
The schematic diagram of the image system is shown in Figure 1(c). Applying this method the
fundamental solution in the integral formulation of velocity field (11) (and the related kernels in
the integral equations mentioned earlier) becomes

Ĝ(x,x′)= 1

2�
(ln |x−x′|− ln |x− x̂′|) (48)
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where x̂=(x,−2h− y). One may note that the new kernel is not applied in the PSE calculation
because its integration is over the real fluid domain only.

3.6. Nondimensionalization and stability criterion

By expressing all equations in terms of nondimensional variables, one solution may suffice for a
variety of different problems. After choosing the typical length D and the typical speed U and
then using the following dimensionless variables

x∗ = x
D

, u∗ = u
U

, t∗ = Ut

D
, p∗ = p

�U 2
(49)

the governing equations and boundary conditions can be converted into dimensionless forms. In
the computation of periodic waves past a rectangular obstacle (Section 4.3), we choose the still
water depth as the typical length D and evaluate the typical speed U from the incoming wave
condition.

Ploumhans [36] found an upper limit on the time step for the stability of the PSE. For the
Gaussian blobs with an overlap ratio �/h p =1 the limit in dimensionless form is

�t∗

�2Re
< 0.595 for an Euler explicit scheme

�t∗

�2Re
< 0.297 for a second-order Adams–Bashforth scheme

(50)

where �t∗ is the dimensionless time step. In this study, the spatial resolution for the computation
of the free surface is set to be looser than the spatial resolution for the vorticity field. After a
series of numerical experiments, we find that in the present model the stability is constrained by
the vorticity computation and Equation (50) can be used as the stability criterion of the present
model.

4. NUMERICAL EXAMPLES

This section summarizes a number of studies to verify the proposed model. In Section 4.1 the
inviscid part of the numerical method is examined using a calculation of solitary wave propagation
in a uniform channel. Its main purpose is to verify the ability of the method to simulate the
motion of nonlinear waves. A further test reported in Section 4.2 is implemented by comparing
the numerical results with theoretical solutions for a moving line vortex interacting with the
free surface. In this test we may verify the ability of the method to simulate the free-surface
deformation induced by the vortex in the fluid. In Section 4.3 a case of periodic water waves
travelling over a rectangular submerged obstacle is performed, and comparisons are made with
respect to experimental measurements provided by Ting and Kim [37]. In this test we may verify
the comprehensive capacity of the present method. The convergence study of refinements in the
spatial and temporal discretization is also presented in Section 4.3.

4.1. Solitary wave propagation in a uniform channel

The numerical test is implemented in a uniform channel whose length is 50h. Sponge layers are
placed at 0�x/h�1 and 49�x/h�50 with �d =10. A solitary wave propagating from left to right
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Figure 3. The numerical results of solitary wave propagating on constant depth, evaluated by the present
scheme (——) and Tanaka’s method (– – –).
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Figure 4. L2-norm error of the computed free-surface elevation of solitary wave propagation.

with wave height H/h=0.4 is simulated. The panel length at the free surface is �x=0.0625h
initially, and the time step is 0.01. The initial free-surface elevation and velocity potential are
obtained by Tanaka’s method [38], which can compute the exact solitary wave solution. The
method of image is applied to enforce the no-penetration boundary condition on the bottom.

Figure 3 shows the comparison between the free-surface profiles evaluated by the present method
and those by Tanaka’s method. The L2-norm error of the computed free-surface elevation in the
time evolution, as compared with the exact solution, is presented in Figure 4. The L2-norm error
is defined as

L2(yF)=
√√√√ 1

NF

[
1

H2

NF∑
i=1

(yexactF − ynumerical
F )2

]

where NF is the number of panels at the free surface. The two figures reveal that the computational
results including both wave shape and wave phase agree with Takana’s solution very well, and the
sponge layers successfully absorb the small, out-going disturbances.
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Figure 5. Schematic diagram of the surface wave generated by a moving line vortex.

4.2. Moving submerged line vortex

In a deep channel (h→∞) with inviscid fluid, a line vortex with constant strength � moves at
constant velocity U in the direction perpendicular to the x-axis and at a fixed distance b below
the undisturbed free surface, as shown in Figure 5. In order to perform an identical simulation
with the linear theoretical solution proposed by Salvesen [39], the nonlinear terms in the evolution
equations for zF and �F are omitted. The field length is selected to be 22 with sponge layers at
−11�x�−10 and 10�x�11, and the water depth is infinite. Time step is set to be 0.01, and
at the free surface the initial panel length �x=0.2. Positive and negative circulations, �=±�,
are considered, and the velocity of the line vortex is 3. The initial position of the line vortex is
(−9.0,−1.5).

Figures 6(a) and (b) demonstrate the comparisons between the wave profiles evaluated by the
numerical model and those by the analytic solution. Figure 7 shows the L2-norm error of the
computed free-surface elevation, as compared with the exact solution. It can be observed that
the numerical results and analytic solutions are in good agreement.

4.3. Periodic waves passing over a rectangular submerged obstacle

4.3.1. Description of computational setup. The experiment presented in [37] was conducted in
a 37-m long, 0.91-m wide and 1.22-m deep wave tank with a permeable wave absorbing beach
downstream. A rectangular obstacle of height d=30.48cm and width l=60.96cm was placed
on the bottom of the tank. Its center was situated at x=0m and the wave generator was located
at x=−10.7m. The water depth h is 60.96 cm, the incident wave height H is 5.85 cm and the
incident wave period T is 4.0 s.

In the numerical computation the characteristic velocity scale evaluated from the incoming
wave condition [40] is 0.49m/s, the characteristic length scale is 0.6096m and the Reynolds
number Re=3.0×105. The computational domain is confined within x/h=−23.0–11.5. Sponge
layers are placed at −23.0�x/h�−19.7 and 8.2�x/h�11.5 with �d =40. The fluid is initially
at rest, and wave train is generated using the internal wave-maker with the source function for the
second-order Stokes wave.

4.3.2. Particle remeshing with mapping of the physical domain. From the experimental result one
may observe that vorticity is located in the vicinity of the upper corners of the obstacle. Thus, it
would be more efficient to set high resolution near the upper corners of the obstacle and coarser
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Figure 6. Wave profile generated by the moving line vortex at various times evaluated by the numerical
model (——) and the analytic solution (•••): (a) �=−� and (b) �=�.
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Figure 7. L2-norm error of the computed free-surface elevation of the moving
line vortex: �=� (——), �=−� (– – –).

resolution in the far region. To achieve this, using an appropriate mapping the physical domain
with spatially varying resolution can be mapped onto a regular indicial lattice [26, 41]. We denote
by x locations in the physical space with variable blob size, and by n=(
,
) locations in the
mapped coordinates, where the grid size is uniform. In this case the following mapping is applied:


(z)+ i
(z)=K0(z−z0)
2/3 (51)
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Figure 8. Redistribution mapping for the periodic waves travelling over a rectangular obstacle.

Table I. Parameters of the cases for convergence study.

�t∗ NB NF

Case 1 0.025 750 600
Case 2 0.01 920 780
Case 3 0.005 1160 960

where z= x+ iy, z0 is the position of the upper corner, which is closer to z than another. The
constant K0 is chosen so that the length of the smallest cell is approximately equal to

√
2�t∗/Re.

After each redistribution, new particles have position (i+ 1
2 , j+ 1

2 ) in the mapped domain. The
area associated with the particle in the physical space is

Sp = J (n)

where J denotes the Jacobian determinant of the mapping. Here an overlapping ratio �/h p =1 is
used and thus �=√Sp. The mesh of the redistribution mapping is illustrated in Figure 8.

One should note that this is a local mapping for the region near a single upper corner of the
rectangular obstacle; therefore, it is necessary to link two local mappings (for two upper corners)
by their superposition.

4.3.3. Convergence study. The convergence of the numerical solution was examined by varying
the parameters of the numerical model, such as the core size �, the time step �t∗, the number of
panels on the solid wall NB and on the free surface NF. Because the smallest panel length on
the solid surface is equal to

√
2�t∗/Re and an overlap ratio �/h p =1 was used, the first three

parameters listed above were linked. Three cases with different �t∗ and NF were computed (see
Table I), and the results of free-surface elevation, vorticity field and streamlines were used to
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Figure 9. Effect of variable resolution on the free-surface elevation.

monitor the convergence. In these cases, particle remeshing is performed every two time steps,
and the sub-grid modelling for eddy viscosity with Cs =0.15 is applied.

In Figure 9 we present the time histories of the free-surface elevation at various measuring
points: (a) x/h=−1, (b) x/h=0 and (c) x/h=1. The result reveals that the computation
of the free-surface elevation is relatively insensitive to these parameters. In Figure 10(a) the
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Figure 10. Effect of variable resolution on (a) the vorticity contours and (b) the streamlines: (···) Case 1;
(– – –) Case 2; and (——) Case 3.

dimensionless vorticity contours of (0,±10,±30, . . .) and (b) the dimensionless streamlines of
(0,±0.002,±0.004, . . .) at t (U/h)=4.9 are presented. It shows that the results of Cases 2 and 3
are in good agreement.

In order to demonstrate the validity of the method with variable blob size using the proposed
mapping, the result obtained from the computation using non-variable blobs is also presented.
Its computational parameters are �t∗ =0.005, NB=3000 and NF=960, and the remeshing
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Figure 11. Computational result of (a) vorticity and (b) streamline contours by variable blob size for
periodic waves travelling over a submerged obstacle.

Figure 12. Computational result of (a) vorticity and (b) streamline contours by uniform blob size for
periodic waves travelling over a submerged obstacle.

frequency is two time steps. Figures 11 and 12 show the vorticity contours and streamlines at
t (U/h)=4.9 computed by variable blobs (Case 3) and by uniform blobs, respectively. It can be
observed that two results are in good agreement. The particle locations in both cases are presented
in Figure 13, and the saving on computational elements up to time t (U/h)=4.9 is shown in
Figure 14.
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Figure 13. Particle locations for periodic waves travelling over a submerged obstacle: variable
size blobs (•) and constant size blobs (�).
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Figure 14. Number of particles as a function of time for periodic waves travelling over a submerged
obstacle: variable size blobs (——) and constant size blobs (– – –).

4.3.4. Results and verifications. During a wave period the number of particles goes from ∼15000
to ∼25000, and the total run time is approximately 6 h on a personal computer with a single
2.66GHz CPU. The computational free-surface elevations at different phases in a wave period are
shown in Figure 15, in which t0 is the time when the wave crest arrives at the left wall of the
obstacle. We compare the computed amplitudes of the first three harmonics with the experimental
data in Figure 16. Good agreement is observed from this comparison.
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Figure 15. Free-surface elevations at different phases for periodic waves passing
over a submerged rectangular obstacle.
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Figure 16. Variations of fundamental and harmonic wave amplitudes for periodic waves passing a
submerged rectangular obstacle.

The vorticity fields at different phases are presented in Figure 17. It shows that when the flow
direction changed, former recirculating zone dissipates due to the convection of the reversed flow
and the diffusion of vorticity. The growth and dissipation of recirculating zones are periodic, and
the vortices are trapped in confined regions near the two upper corners of the obstacle. Figure 18
shows the comparisons of the velocity field at different phases between the numerical results
and the laboratory measurements and indicates that the present method captures the flow patterns
reasonably well. In order to compare the present results with those by a grid-based scheme,
in Figure 19 we show the velocity fields presented by Hsu et al. [18], who simulated the same
experiment using a finite-analytic method to solve the RANS equations with the k–� turbulence
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Figure 17. Vorticity contours and free-surface profiles at different phases for periodic waves passing a
submerged rectangular obstacle.

closure. It can be observed that the present method provides more reasonable results. This may be
attributed to the relatively higher resolution of our computation.

To test whether the sub-grid eddy viscosity is necessary, the vorticity contours as computed
without the sub-grid modelling are shown in Figure 20. One may observe that lack of the sub-grid
eddy viscosity causes significant oscillation of vorticity. In fact, from the results of numerical tests
with different incoming wave conditions we may find that without the use of eddy viscosity a
non-periodic flow pattern appears because the vorticity dissipation is underestimated. This appears
to violate the observation in laboratory experiments.

5. CONCLUSIONS

The aim of this study was to establish a 2-D numerical model that combines the vortex method and
the boundary integral method to simulate the interaction of surface water waves with a submerged
obstacle. Generation of vorticity on the free surface is neglected.

The inviscid part of the numerical method is tested using a calculation of solitary wave propaga-
tion in a uniform channel. Surface elevation is compared with results of an exact solution evaluated
numerically, finding good agreement. A further test is performed by comparing numerical results
with theoretical solutions for a moving line vortex interacting with the free surface. Good agreement
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Figure 18. Comparisons of the velocity fields at different phases between numerical results and laboratory
measurements: (a) experiments by Ting and Kim [37] and (b) present model.

in the wave profiles is obtained. The full numerical method is used to compute the flow resulting
from periodic water waves travelling over a submerged rectangular obstacle, and comparisons are
made with respect to experimental results. The overall agreement is reasonably well.

The major advantage of the proposed numerical method is the ability of a boundary integral
method to solve the free-surface motion and the essentially grid-free nature of the Lagrangian
vortex method for the vorticity field. A boundary integral method is a predominant scheme for
simulating a moving boundary problem because only grid points on the boundaries of the fluid
domain are needed. On the other hand, inside the fluid domain, describing the flow in terms of
vorticity-carrying elements is desirable due to the fact that the rotational flow field is usually
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Figure 19. Computational results of Hsu et al. [18] for periodic waves passing
over a submerged rectangular obstacle.

Figure 20. Vorticity contours for periodic waves passing a submerged rectangular obstacle,
as computed without sub-grid modelling.

confined inside small regions around submerged bodies; therefore, predominantly compact compu-
tational domains can be used, in comparison with primitive variable formulations.

APPENDIX A: HELMHOLTZ DECOMPOSITION AND THE CORRESPONDING
INTEGRAL FORMULATIONS

The Helmholtz decomposition theorem states that an arbitrary differentiable velocity field u can
be decomposed into its irrotational and rotational part as (for 2-D flow):

u=∇�+∇×(�k̂) (A1)
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where � and �k̂ are scalar and vector potentials, respectively. The integral formulation of the
decomposition for incompressible fluid flow may be expressed as [42]

u(x)=
∫
V

�(x′)k̂×∇G dx′+∇
∫
S
G n̂(x′) ·�u(x′)dx′−∇×

∫
S
G n̂(x′)×�u(x′)dx′ (A2)

where S is the boundary of V , �u=u2−u1 (where the subscripts 1 and 2 indicate the two sides
of S, which are in the interior and exterior of the fluid flow domain, respectively) and the unit
normal vector n̂ points from side 1 to side 2. One may find that the boundary integrals over S
give the potential velocity induced by sources and vortex sheets represented by the inner product
n̂·�u and the cross product n̂×�u, respectively. Because on a solid wall the no-slip condition
(�u=0) applies, the distributions of source or vortex sheet are absent. At the free surface the
discontinuity of density induces a jump in tangential velocity across the interface with continuous
normal velocity; hence, a vortex sheet exists along the free surface. Since in 2-D flow the vortex-
sheet strength is related to the arc-length derivatives of the dipole strength [24], Equation (A2)
can be rewritten as

u(x) =
∫
V

�(x′)k̂×∇G dx′+
∫
SF

�(x′) �G
�n(x′)

dx′

=
∫
V

�(x′)k̂×∇G dx′+
∫
SF

�F(x
′)k̂×∇G dx′ (A3)
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